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A theoretical investigation of the vibrational motion of a free nine-atomic tetrahedral molecule 
is given using Wilson's FG-matrix method. By going to the limit of infinite mass of the outermost 
atoms, the vibrational frequences of a bound five-atomic tetrahedral molecule are obtained. This 
limiting case is also alternatively treated by the explicit consideration of the hindered translational and 
rotational motions. Such a model would probably approximate the state of affairs for amorphous 
substances with a tetrahedraI basic unit. 

Die Schwingungen eines freien, neunatomigen, tetraedrischen Motekiils werden analysiert. 
Indem man die Massen der gugersten Atome unendlich werden l~iBt, erh/ilt man die Schwingungs- 
frequenzen eines gebundenen, ffinfatomigen tetraedrischen Molek/ils. Dieser Fall wurde auch direkt 
unter Berficksichtigung der Behinderung der Bewegungen behandelt. Dieses Modetl k6nnte zur 
Beschreibung amorpher Substanzen aus tetraedrischen Grundeinheiten dienen. 

Etude th6orique du mouvement vibratoire d'une mol6cule libre t6tra~drique/~ neuf atomes au 
moyen de la m6thode de la matrice FG de Wilson. En passant ~ la limite de masse infinie des atomes 
p~riph6riques, les fr6quences vibrationnelles d'une mol6cule li~e t~tra6drique /t cinq atomes sont 
obtenues. Ce cas limite est aussi trait6 par la consid6ration explicit6 des mouvements de rotation et de 
translation non libres. Un tel mod61e constitue probablement une approximation pour les substances 
amorphes/l unit6 de base t~tra6drique. 

1. Introduction 

The deve lopmen t  of  the  theory  of  mo lecu la r  v ib ra t ions  based  on  group  theory  
for symmet ry  cons ide ra t ions  has  been of  grea t  help  in the under s t and ing  of  the 
result ing spect ra  [1]. 

In  this work ,  the  v ib ra t iona l  m o t i o n  of  a free n ine -a tomic  t e t r ahedra l  molecule  
AB4C 4 is first cons idered  using the F G - m a t r i x  m e t h o d  [2] based  on  a previous  
work  by  Wi l son  [3]. A n u m b e r  of complexes  of  such t e t r ahedra l  symmet ry  are  
formed by  meta l  ca t ions  with l igands  [4]  as CO,  O H ,  N O  and  CN.  In fact, the 
v ib ra t iona l  analysis  of  such a molecule  has been  previous ly  cons idered  by  Craw-  
ford and  Cross  [5]  using an a p p r o x i m a t e  po ten t i a l  funct ion and the results  have 
been found to account  sat isfactor i ly  for the infra-red and R a m a n  spect ra  of  
n icke lca rbonyl  [6].  The  analys is  is here recons idered  assuming  the mos t  genera l  
ha rmon ic  po ten t ia l  funct ion and  using a comple te  set of  in te rna l  coord ina tes  [7].  

By going to the l imit  of  infini te mass  of the o u t e r m o s t  a toms  C we then ob ta in  
the  n o r m a l  v ib ra t ions  and  frequencies of  a f ive-a tomic t e t r ahedra l  s t ructure  which 
is b o u n d  to four  fixed "walls".  Such a m o d e l  would  a p p r o x i m a t e  the state of  
affairs of  subs tances  in a condensed  phase,  in par t icu la r ,  a m o r p h o u s  substances  
and  with a t e t r ahedra l  basic  uni t  which is no  free bu t  l inked to the rest of  the 
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structure. In fact, this model has been considered using an alternative approach 
and it was found to account satisfactorily for the infra-red and Raman spectra 
of vitreous silica [8]. The model is, however, less adequate for periodic crystalline 
structures. Theoretical investigations of the translational and rotational motions 
of the molecules in molecular crystals have been attempted [9]. However, in these 
investigations the molecule was assumed to be rigid and the interaction between 
internal and collective vibrations is neglected. 

The bound structure model is physically equivalent to the model in which, 
in addition to the internal vibrations, the translational and rotational motions 
are hindered by appropriate restoring forces. The latter is a general useful approach 
and it would be interesting to find out explicitly its relation to the alternative 
bound structure treatment. This investigation has been carried out in the case 
under consideration. Two forms of the potential energy, one describing a hindered 
tetrahedron and the other describing a bound one, have been considered. The 
relations between the "apparent" and "actual" force constants of the two forms, 
respectively, are then deduced. 

2. Free Nine-Atomic Tetrahedral Molecule 

2.1. Internal Coordinates and Symmetry Species 

The genuine vibrations of a free nine-atomic tetrahedral molecule AB4C4, 
as shown in Fig. 1, can be described by 3 N -  6 = 21 independent internal co- 
ordinates. Using the character table of the Te-group representations, the species 
(symmetry types) of these vibrations are found to be 

F=2A~ + 2 E + F  1 +4F2,  (1) 

where A 1, E, F1, F2 denote irreducible representations of the Te-group. The four 
F2-type frequencies are both infra-red and Raman active, the Fl-type frequency 
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Fig. 1, Tetrahedral nine-atomic molecules AB4C 4 
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is both infra-red and Raman inactive, while the two Al-type and the two E-type 
frequencies are only Raman active. The A 1-type frequencies should be completely 
polarized [1, 2]. 

The following four equivalent sets of internal coordinates are chosen to 
describe the vibrational motion [7]. 

r~ (i= 1 -  4) the four A-B bond stretchings. They contain the symmetry 
species A1, F 2. 

d~ (i = 1 - 4 )  the four B-C  bond stretchings. They contain the symmetry 
species A1, F a. 

eu (i = 1 - 4, i r  eu = e~) the six BAB valence angle increments. They contain 
the symmetry species A 1, E, F 2. 

flu (i = 1 -  4, i r  f l u e  flj~) the twelve angles between each two bonds con- 
nected to atom i and in the plane of atoms i andj .  The angle is considered positive 
when it lies on the side ofa tomj .  They contain the symmetry species A~, E, F~, 2F2. 

There is a total of twenty-six coordinates which yield the representation 

F ' =  4A1 + 2 E +  F~ + 5 F  2 . (2) 

Thus we have five redundancies of species 2A1, F2. The redundancy conditions 
can be obtained from the forms of the G-matrices as we shall see below. 

2.2. Potential and Kinetic Energy Expressions 

In terms of the above-introduced set of internal coordinates and taking into 
consideration the symmetry properties of the molecule, the most general potential 
energy in the harmonic approximation would be given by the expression 

2 ~ = Cr(r~ + " .  + r 2) + 2 Crr(r 1 r2 + " "  + rs r4) + Ca(d~ + " "  + d z) 

+ 2Caa(dld= + ' "  + d3d4) + r2C,(~2 + " "  + 0~4) 
2 t + 2r~C,,(~12~34 + " "  + ~14~23) + 2r0C~(0~12~13 + " "  + ~240~34) 

2 2 2 2 + roCa(f112 + " "  + fl43) + 2 roCpa(fllzf134 + " "  + fl/1 fl43) 
2 2roC~a(fllEfi23 + " "  + f143f132) q_2roC#t~(f112f121 + . . .  _[_fi34f143).q - 2 t, 

r2 f w' [ R R 2 ro Cz~(fl12f132 + " "  + f i23f i43)  + 2 0 , . - , f l B ~ . l , , 1 2 ~ l a - ~ - ' " A f - f 1 4 2 f 1 4 3 ) - [  - 2 .... 

+ 2Crd(rldl + ... + red4)+ 2C'~d(rld2 + ... + r,~d3) 

+ 2roCra(rl~12 + . . .  + r4~34) + 2roC'r~(rlct23 + . . .  + r4ct23) 

+ 2 roC~(rl f lz l  + . . .  + r4f134) + 2roC'~p(rlf112 + . . .  + r4fi43) 

d- 2 roC '~ ( r l f 123  - } - ' "  d- r4f132 ) -k- 2roCd~(dlcq2 + " .  + d 4 ~ 3 4 )  

+ 2roC'd~(dl~23 + . . .  d- d4~23 ) + 2roCa~(dlf121 + ' "  q- d4f134) 

+ 2roC'atj(dlflx2 + " "  + d4fi43) + 2roC~(dl f lz3 + " "  + d4f132) 

d- 2r2C~l~(~lzflt2 + . . .  + cta4f134) d- 2r2C'~l~(O~tEf131 + . . .  + (z34f123) 

2roC~#(cz12f134 + " "  + (Xa4f121) '  (3) +2roC~B(~12f113  + . . ,  + ~ 3 4 f l 3 2 ) +  2 tit 

where the C's are the force constants and ro is the equilibrium interatomic distances 
A-B. Expression (3) has twenty-nine constants, as it should be, since Sn~(nr + 1)/2 
= 29, where n~ are given by the coefficients on the right-hand side of Eq. (2). 
However, it follows from Eq. (1) that Sn~(nr + 1)/2 = 17; there can be, therefore, 
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only seventeen independent constants. Hence there are twelve redundant con- 
stants. As we shall see, the excessive force constants can be easily visualized and 
treated after the introduction of the symmetry coordinates. 

In terms of the internal coordinates the kinetic energy has a similar form as 
that of the potential energy expression (3). The matrix-elements of the K-matrix 
of the kinetic energy, which are functions of the atomic masses and the geometrical 
constants of the molecule in its equilibrium position, remain to be evaluated. 
Devices and formulae have been developed for the evaluation of K-matrix elements 
corresponding to various combinations of internal coordinates [2]. Applying 
these rules the k-constants can be readily evaluated and are found to be 

1 
k r = t~c A- [A1, krr - 3 Pc, kd = ]21 -}- #2,  kda = O, 

8 8 1 
k~ = 2#1 + 5 -  #c, k= = 3 #~' k',~ = 2 #~ ' 

2 1 
kp = Pc + (1 + 7)2#1 + 72~2, kap = - -~ Pc, k}r = 5-  Yc, 

1 1 5 
k}a = - .~- #c, k}~ = - ~- {#~ + (1 + 7)2#~ + 72p2}, k ~  = ~- Pc, 

2 ] / 2  2 V 2  
k r d  --= - -  [d 1 ,  k'ra = O, kr~ = 3 #c, k'r~ - 3 Pc, 

3 #c, k'ra=O, 
,, [/-2 

k.p = ~ Pc, ka, = ka~ = O, 

where 

4 
kaa = k~a = k~p = O, k~p = (1 + 7)#~ + 5- PC, 

2 
k;p = - 5 -  m -  (1 + 

/ 

= T m ,  

4 

= - 5 -  
(4) 

1 1 1 
ktc-- m~' / q - -  ma /t 2 m2 (5) 

are the reciprocals of the masses of the atoms A, B, C, respectively, and 

ro (6) 
? = do ' 

where r o and d o are the equilibrium interatomic distances A - B  and B - C  re- 
spectively. 

2.3. S y m m e t r y  Coordinates-F- and G-Matr ices  

In order to attain max imum factorization of the secular equation, it is necessary 
to construct properly oriented symmetry coordinates [2]. The F- and G-matrices 
of the potential and kinetic energy expressions, respectively, have then to be 
calculated in terms of the new symmetry coordinates. These can be readily 
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obtained by the methods developed for this purpose [2]. According to Eq. (2), 
the secular equation originally of degree twenty-six reduces to a quartic factor 
determining the vibrations of the non-degenerate species At, two identical 
quadratic factors determining the vibrations of the doubly degenerate species E, 
three identical single factors determining the vibration of thr triply degenerate 
species F1 and three identical quantic factors determining the vibrations of the 
triply degenerate species F2. As indicated in Section 2.1, species A t, E, F 1 each 
occur at most once for every equivalent set. In this case, a representative of each 
of these species can be constructed in a straightforward manner [2]. The properly 
oriented generating coordinates for the various equivalent sets are chosen to be 
rt +r2, dt +d2, 0{12, fit2 "~- fi21 which are invariant with respect to a subgroup 
Czv of  Ta. 

The equivalent set of the//-coordinates contributes two F/-species and the 
construction of the symmetry coordinates of type F2 requires, therefore, special 
consideration. In such cases, where an equivalent set of coordinates contributes 
more than one species of a certain type, it has been shown by Wilson et al. [2] 
that it is always possible by the help of a properly chosen subgroup K of the 
symmetry group to reorganize the original set of internal coordinates into non- 
mixing subsets. Each subset contains a certain species at most once. The usual 
methods and rules could then be applied to each subset separately. In our case the 
subgroup C2~ is found suitable to be K. The twelve/?-coordinates can, then, be 
reorganized into two non-mixing sets each containing six equivalent members, 
namely 

1 1 1 
K I  ~--- ~ (/~12 ~- fi2t), K 2 =  ~ - ( f i l 3 - ] -  fi3t), Ks  = ~ -  (fit4 't- fi41) 

1 1 1 
K4 = ~ (fi23 + fis2), K4 = ~ (~24 + ~42), K6 = -~-(/~3~ +/~43), (7 a) 

and 

1 1 1 
Ki = -1~- (17t2 - fi20, Ki  = ~ (//~3-fist), K; = -]~- (fit4 - / / 4 0 ,  

1 1 1 
K~ = ~ -  (fi23 -- /~32), K~ ~- ~ -  (/~24 -- /~42), K~ = - ~  (fis4 -- fl43)" (7 b) 

The problems of redundancy can then be readily treated. It has been shown by 
Wilson et al. [2] that if a linear combination of coordinates vanishes, so does the 
same linear combination of the corresponding G-matrix elements in any row 
or column. The redundancy conditions can be, therefore, directly deduced from 
the forms of the G-matrices and are found to be 

(0{12 -I- 0{13 -~ 0{14 -1- 0{23 -}- 0{24 "]- 0{34) = 0 ,  (8 a) 

(/~t~ +/~13 +/~t~ +/~2t +/~2a + / h ,  +/~at +/~32 +/h4 + P~t + / ~  +/~,s) = 0 (Sb) 

of type A t, and 

(/h2 +/h3 +/h ,  +/ht  +/~23 +/h4-/~s, - / h 2 - / h , - / ~ , ,  - /~ ,~ - /~ )  = o (8c) 
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of type F 2 as stated before. The redundancy conditions given by Eqs. (8) together 
with two conditions similar to Eq. (8 c) and corresponding to the other two 
symmetry coordinates of species F2 amount to the rather obvious redundant 
conditions 

~f l i j=0 ,  i=  1,2,3,4. (9) 
j r  

Next we consider the redundant force constants. For this purpose the potential 
energy and the redundant relations (8) are expressed in terms of the symmetry 
coordinates. The redundant coordinates are then eliminated from the potential 
energy expression, it is then found that the force constants appear only in seventeen 
independent combinations. In particular, it is found that the sets of constants 
C C~, C'J, (C B, Cp~, C~e, C~, C~, C~), (C~, C;~), (C,e, C;e, C,'.'~), (G~, G~), 

(Cap, C5~, C~a). (C~a, C~,e, C~p, C~}) appear only in 2, 3, 1, 1, 1, 1, 2 combinations, 
respectively. Without loss of generalization, it is therefore perfectly allowable to 
put, respectively, 1, 3, 1, 2, 1, 2, 2 (twelve in total) force constants, or linear com- 
binations from the previous sets equal to zeros. However, one has to be sure that 
the remaining combinations are linear independent. We arbitrarily choose 

' " = " -  . . . . .  c ; . =  = " =  ' = . . . . .  = " = 0  ( 1 0 )  C~=C~e C ~ - C p ~ -  C',~ C~e Ca~ Cee=Cap=C~ e C~ . 

In terms of the remaining seventeen force constants, the nine (partly degenerate) 
normal frequencies of a nine-atomic tetrahedral molecule are given by the roots 
of the secular equations 

[G(~)F (~) - 2El = O, (11) 

where the F <r) and G (e) matrices together with the corresponding symmetry co- 
ordinate (one component for each degenerate species) have the following forms: 

Al-species (21,2'0 

1 
S1 = y (i'1 hI- P2 + r3 + r4), 

1 
S'1 = 2 -  (dx + d2 + d3 + d4.); (12a)  

G = [  #I #1~ _~1#2J, (12b) 

f=[Cr+3Crr  C,a + 3 C;a~ 
Ca + 3 Caa j " (12c) 

E-species (22, 2~) 

t 
$2 = ] ~ -  (2"12 --  ~ --  "14 - "23 --  "24. -It- 2 " 3 4 ) ,  

1 
s~= y ~  (2/~12-/~13- fl14 + 2/~21-fi23-/h,-/~31-f13~ 

+ 2fl34 - fl,1 -/~4.2 + 2/~4.3) ; (13a) 
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G =  3 1 2 3 2 ] '  
. T(+~) ~ l + y ~  ~ J  

v = -c,  + c= ~ ( % -  c;o) ] 
C o + 2 Coo + C}o j "  

Fl - spec i e s  (23) 

1 
s3 = ~ (2~12 - 813 - ~ 1 ~ -  2 & ,  + &3 + G~  + G ,  - G~ + ~4~ - ~ ) ;  

3 2  
G =  ( l + y ) 2 a l + ~ - ?  ~2, 

F = C o - C'~o. 

F2-species  (24, 2~,, 21, 2~') 

4 

F = [ Cr - C,~ 

-//i 

//i + #2 

Crd - C;. 

Cd - Cdd 

1 
S 4= ~ - ( r t + r  2 - r  3- r4)  , 

1 
S~, = ~- (dr + d2 - d3 - d4), 

S~ = ~ (~12 - ~s~), 

S"' 1 4 = y ( & 2  + & l -  & 4 -  &3) ,  

8 - 4 ~  
3 #c 3 #c 
0 0 

16 
2 # 1 + ~ - # c  ~ ( 1 + 7 ) # 1 +  #~ 

8 
(1 + y)2#1 + ~ #~ + y2#2 

V2C~ 2C,, ] 

V2cd~ 2Cdo l 
G -  c= V~(cop+ c;o) l 

3 1 , 1 
C o - 2 Cpo + ~ Coo ] 

(13b) 

(13 c) 

(14a) 

(14b) 

(14c) 

(15a) 

, (15b) 

05c) 

3. Bound Five-Atomic Tetrahedral Molecule 

By going to the limit of an infinite mass of the outermost atoms C(m2 = 0% 
#2 = 0), we obtain the case of a five-atomic tetrahedral structure AB4 linked to 
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"fixed walls" placed at the A-B bond extensions. From the character table we 
find that for structure of symmetry Te the translations and rotations are of species 
F2 and F1, respectively. For a bound structure, small translations and rotations 
are opposed by restoring forces which render them as genuine vibrations. A bound 
five-atomic tetrahedral structure has, therefore, a total of normal vibrations of the 
following species: 

F"= AI + E + FI + 3F2. (16) 

Comparing Eq. (16) with Eq. (1) we find that three frequencies (degeneracy not 
counted) of the free nine-atomic molecule AB4C 4 of types As, E, F 2 will have 
zero values in the limit #z = 0. 

That some frequencies go over to zero in the limit m: = oo implies also the 
appearance of additional redundances. This is of course physically clear since 
imposed constraints give rise to mathematical relation between the coordinates. 
The additional redundancies can be directly obtained by puting #z = 0 in the 
G-matrices given by Eqs. (12b) to (15 b) and are found to be 

$1 +S'1 = 0 ,  (17a) 

1 ~  (1 + 7 ) $ 2 - S ~  = 0  (lVb) 
2 

1 + 7  ,, 
$4+S~,+ z7~--$4 2-7 S ] ' = 0 .  (17c) 

The redundancy can be treated in an analogous way as indicated before. When 
the symmetry coordinates are eliminated from the potential energy function by 
means of Eqs. (17), it is found that 17 constants appearing in the F-matrices of 
Eqs. (12c) to (15c) occur only in 9 independent combinations, as Eq. (16) also 
implies. We arbitrarily put the following 8 constants equal to zero: 

C~rd = Cdd = CaB ~- Ctc~fl = Cep = C~Bfl = Crfl = Cdfl = O . (18) 

Hence, we get for the bound AB4 tetrahedron the following F and G-matrices as 
derived from those given by Eqs. (12)-(15) and in terms of the remaining nine 
constants 

A l - s p e c i e s  (/~1) 

E-spec ie s  (22) 

Fl-species (23) 

C =  (Cr, Cd, Ca, Cfl, Crr , Crd , Cra , Cda , Ccta). (19) 

G = ~t 2, F = C~ + C a + 3 C~ - 2 C~d. (20) 

(1 + 7) 2 
6 = 3 # 2 ,  F = C a + C , = +  ~ C p .  (21) 

G = 3 (1 + 7)2#2, F = C e . (22) 

8 Theoret. china. Acta (Berl.) Vol. 12 
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F2-species (2,,, 2~., 2~) 

[ 4  
#1 + ~ - # c  - -#1 

G = - # 1  

8 
- ~ / ~ ,  

8] 
3 #c 

#1 0 , 

16 
0 2#a + ~ - # c  

3 
C~-Cr,+3?ZCa C r a + 3 T 2 C #  ]~C,~,q- ~-~(1 +]OC# 

3 
C,a+372C# Ca+372C# V2C,~+ ~-7(1  + ?)C# 

3 3 3 
G-c=+ C 

F =  

(23) 

If  the in te rac t ion  cons tan t s  are  neglected,  the n o r m a l  frequencies will have 
a relat ively s imple dependence  on the r ema in ing  four cons tan t s  Cr, Ca, C~, C a. 
The  behav iou r  of  the n o r m a l  frequencies given by  Eqs. (12)-(15) as the mass  m2 
of  ou t e rmos t  a t o m s  C changes  from 1 a.m.u, to infini ty for selected values of  the 
force cons tan t s  and  a tomic  masses  is i l lus t ra ted  in Fig. 2. 

3000 
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2000 
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. . . . . . .  A1-Species 

. . . . . . . . .  E - . 

..................... E l -  u 

- -  F 2 -  . 

\ 
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\ 

1 (18 0.6 0.4 02 ~ 0 

Fig. 2. Normal vibrational frequencies of a tetrahedral nine-atomic molecule AB4C4 as a function 
of the mass rn 2 = 1/#2 of C (see Eqs. (12)-(15)) for the set of values: C, = C a = 5.0, C, =0.4, C a =0.2 
for the force constants; #c = 0.036, #1 = 0.075 for the reciprocal of the masses of A and B; respectively; 
? = 1 for the ratio of the atomic distances. Masses are in atomic mass units and force constants are 
in units of 105 dynes cm-1. Interaction constants are neglected. Notice the change in the scale on 

the ordinate 
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By putting C a : C B = C~a = Ce~ = 0 in Eqs. (20)-(23) we get, as a special case, 
the genuine vibrations of a free five-atomic tetrahedral molecule in the most general 
simple harmonic potential which would contain five force constants [10]. We find 

21 = #1(C~ + 3 C~,), (24) 

, ~ :  3~1(c~ + c j ,  (25) 

) o ~ + 2 ; :  # a + - j - p ~  ( C , - C ~ ) + 2  # 1 + ~ - # ~  ( C ~ - C J  3 #cC~ ,  

242 i = 2 #~ (/z 1 + 4#c) {(C~ - C,~) (C~ - C J  - 2 C~<}, (26) 

where 21 is of species A1, 22 of species E and 24, 2[ are of species F2. 

4. Hindered Five-Atomic Tetrahedral Molecules 

The motion of the bound five-atomic tetrahedron previously discussed is 
physically equivalent to imposing restoring simple harmonic forces on its trans- 
lational and rotational motions in addition to its internal vibrations. It would, 
therefore, be interesting to treat such a hindered motion explicitly and to compare 
the result with that of the previous treatment. For  this purpose we introduce, in 
addition to the sets r~ and c~ij describing the internal motion, the coordinates 
t = ( h ,  t2, t3) and 6=(61,  62, 63) representing small translations and rotations, 
where the subscripts 1, 2, 3 stand for the x, y, and z components, respectively. 
In terms of cartesian displacements, they have the form 

1 
t l  = ~ { m l ( x l  + x2 + x3 + x4) + mcxs} ,  (27) 

61 = ~-3 { ( - Y l  - y2 + Y3 + Y4) + (zl  - z2 + z3 - z4)}, (28) 

with similar expressions for the other components, and where 

M = 1/# = mc + 4ml (29) 

is the total mass of the molecule. From symmetry considerations the most general 
potential energy function in harmonic approximation is readily found to be 

2r g,(r  2 + . . .  + r 2) + 2 C,,(rl r2 + ... + r3ra) 

+ ro 2 C=(c(122 +... + a24) + 2r 2 C==(cq2c%4 +.-- + (z14G(23) 

+ C( t  2 + tz 2 + t 2) + ro 2 C~(62 + 62 + 62) + 2 r 0 C~(r1~12 + " "  + r4a34) 

+ 2 C,t {t 1 (r 1 - r 2 - r 3 + r;) + t 2 (r I - r 2 + r 3 - r4) + t 3 (r 1 + r 2 - r 3 - r4) } 

+ 2ro C~{tl (a14 - C~z3) + tz(a13 - C~z4) + t3 (a12 - a34)}, (30) 

where the force constants are designated by the bars to distinguish them from 
those appearing in Eq. (3). In gq. (30) we have put the redundant constants 
C'~ = E',~ = 0 as deduced from Eq. (10), so that the above expression of the potential 
energy contains only nine constants as it should be for a representation given by 
Eq. (16). The kinetic energy has an analogous expression to that of Eq. (30). The 
8* 
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kinetic energy constants k,, k~,, k=, k~=, k,= are again given by Eq. (4). The remaining 
four k-constants can be readily evaluated by a straightforward generalization 
of Wilson's method and are found to have the values 

3 
kt = # ,  ka = y #1,  k,, = kt~ , = 0. (31) 

The following are the symmetry coordinates and the corresponding F and 
G-matrices as can be easily verified (after the removal of the only A 1-redundancy). 

Al-spec ies  (2 0 

E-species (22) 

Fl-species (23) 

F2-species (24, 2~, 2]) 

1 
S1 = ~- (rl -b r 2 q- r 3 q- ra.) ; 

(7=/~l, F = C , + 3 G , .  

1 
S2 = T ~ -  (2~i2 - ~ 1 3  - ~ 1 4 -  (~23 - e24 + 2c%4) ; 

g=3~l,  r=c~+C=.  

(32a) 

(32b) 

--8 1 
o__/ 0 

(33 a) 

(33b) 

S-3 =61 ; 

3 
G =  ~-#1, F = C a .  

(34a) 

(34b) 

1 
g ,  = - ~  (r ,  + r2 - r3 - r , ) ,  

S'~'4 = t 3 , 

S~= 1 -~-  (~2 - ~,~) ; 

F = [  2Cr, 

k e,, 

2c,, ] 
(35 a) 

(35b) 

The relations between the C-constants and the C-constants can be obtained 
by comparing the F -  G-matrices in both cases as given by Eqs. (20)-(23) and 
Eqs. (32)-(35). However, in the case of F2-species G r G and it is therefore not 
adequate to put (~ff= GF.  Such an equality would lead to the relation F = G- 1GF 
which cannot be valid since its left-hand side is a symmetrical matrix while the 
right-hand side is not. In fact the corresponding matrices are connected together 
by an equivalent transformation. For, suppose the two sets of coordinates 
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S = ($4, S~, S~) and - ' " S= ($4, $4, $4) as given by Eqs. (15a) and Eqs. (35a), respec, 
tively, are connected together, in the matrix notation, by the linear relation 

S= VS, S= US; U V = E .  (36) 

Now, the form of the parts of the potential and kinetic energies corresponding 
to the F2-species are 

2 V = S + FS = S+ Fg ,  (37 a) 

23- = S+ G- l~, = ~+ G- l~.  (37b) 

From Eqs. (36) and (37) we find 

F =  V+FV=(U+) - z F U - ~ ,  (38a) 

CJ= UGU + = V-~G(V+) - ~ . (38b) 

Hence, 

CJF= UGFU- 1, (39) 

which shows that GF and GF have the same normal frequencies. The matrix U 
and its reciprocal V can be readily found from Eq. (38 b) and the forms of G and 
as given by Eqs. (23) and (35 b), respectively. We find 

I 1 o ot[  o0 4. -8rn~+3m c -]/-3 -2m~ 8m~+3m~ - 2  
U 

2 if3 M 2 ~f3 M ' (40) ' 3M ~3 31M J 
0 0 1 0 0 

Comparing Eqs. (20)-(23) with Eqs. (32 b)-(35 b) and making use of Eqs. (38)-(40) 
we obtain the relations between the C-constants in Eq. (19) describing a bound 
five-atomic tetrahedral structure and the C-constants appearing in Eq. (30) and 
describing a hindered one. One gets 

( 42) C, = c~ + 1 - 2~ + ~ ~ c ~ -  2(1 - ~)c,~ + 4~7=c~ 

C.=c~r+5-e 1-74 C~-~oCrd--y42~2G 
82 ~ f82~ 5 2} 

C~=C~+-~-4 Ca-  4Ca~,+l~4 7 -20F(1+?)+-8 - (1+?)  C a 

8 2 4 ~  [ 8  22  1 ( 1  }C a 

C ~ = C ~  2~-2 4C,a 2 ?  4 4 4)Ca ~ 3 + - - 4 ( 1 - ~ @ C d - -  (1-- ~- 

8 47}C ~ +V24~{ 1+~- 5- 
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1 1 ( 4 )  4 2 

{4 } C,~=-~Ca~+ff-~Ca+V6 OYz- ~-~(1 +Y) C a 

4 Cr = ~- (Ca + 3 7 2 Cp), C~ = 4(1 + 7) 2 C~, 

where 

(41) 

= - (42) 
M #1 

The inverse relations expressing the C-constants in terms of the C-constants 
can be similarly obtained. 
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